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Models informed largely by sensor-supplied data can 

provide insights into the role of agriculture in carbon, 

energy, nutrient, and water cycles.

Indrejeet Chaubey, Keith Cherkauer, Melba Crawford,  
and Bernard Engel

Multiscale Sensing and  
Modeling Frameworks
Integrating Field to Continental Scales

Agriculture, which has traditionally been considered a source of food, 
feed, and fiber, is increasingly being identified as a source of energy and 
ecosystem services, such as biodiversity and climate, water, and pest reg-
ulation (MEA, 2005).  The growing world population has significantly 
increased pressure on agriculture in both areas.  Historically, agriculture 
has met societal demands by expanded irrigated and non-irrigated crop-
production areas, increased automation, genetic selection and modifica-
tion of  plants, and better management and pest control, among other 
approaches.  Some of these approaches provide few opportunities today for 
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increasing agricultural production, but others are in 
the early stages of development and provide tremen-
dous opportunities for further expansion.

Food production in greenhouses provides a glimpse 
of the possibilities for meeting increasing demands on 
agriculture.  Modern greenhouse production involves 
large numbers of sensors and controls, as well as infor-
mation technologies (IT), to optimize the production of 
specialty crops, such as fruits and vegetables.  Although 
these specific technologies may not be directly appli-
cable to crop production on a broad scale of watersheds, 
regions, and even continents, they do provide evidence 
of the value of sensing and IT in food production.  For 
broader applications, these approaches would have to be 
greatly expanded and include multiscale sensing.

Computational models and computer-based decision-
support systems are increasingly being used to assist with 
a range of agriculturally related environmental and 
resource conservation issues.  These models rely on data 

from various sources, including sensors.  As ecosystem 
services provided by agriculture become more impor-
tant, models and sensor-supplied data in these models 
that can provide insights into understanding the role of 
agriculture in carbon, energy, nutrient, and water cycles 
will also become more important.

Thus, expanding sensing and IT will be critical to 
meeting the food, feed, and fiber requirements of a 
growing global population, as well as meeting energy 
and ecosystem needs.  

In this article, we propose a multiscale framework 
that can meet the need for in situ point-scale sensing 
in continuous time to develop an understanding of fun-
damental physical and biological processes, spatially 
continuous sampling over extended areas by remote 
sensing technologies to represent phenomena at field, 
watershed, and regional scales, and models of processes 
that link across these scales and represent associated 
dynamic processes (Figure 1).

FIGURE 1   Multi-scale framework integrating in situ and remote sensing data collection, multi-scale modeling, and process representation to develop agricultural watershed 
management strategies.
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Field-Scale Opportunities: Real-Time Sensing

Soil and climate conditions are key components in 
growing healthy and productive crops.  With advances 
in precision agriculture, farmers now know more about 
their soils and crop yields than they have at any time 
since the mechanization and commercialization of agri-
culture began in the early 20th century (Lowenberg- 
DeBoer and Erickson, 2000).  For example, yield maps 
now provide high-resolution information on inter-
annual field-scale production variability, enabling 
farmers to adjust application rates of seed, fertilizer, and 
pesticides to maximize crop yields.

However, these are static sources of information gen-
erated after a crop has been harvested.  They cannot 
provide immediate input about conditions that might 
lead to reduced productivity, nor can they be used to 
determine preventive solutions that could increase yield 
in a given season.

In Situ Technologies

Opportunities and Challenges

Inexpensive sensor technologies and wireless com-
munication are increasingly being used in modern 
agriculture to provide real-time information on soil 
and meteorological conditions.  Soil temperature and 
moisture are standard measurements that are impor-
tant to crop yield.  Low temperatures can slow seed 
germination and cause stress on young plants, thus 
increasing the likelihood of disease and smaller yields.  
Late-season planting can avoid cold soil temperatures 
but also decrease crop yields by delaying growth and 
development until drier weather later in the summer.  
Traditionally, soil temperature has been measured at a 
handful of sites in a state; in recent years daily values 
have been provided online.

Water stress, induced by limited water availability, is 
perhaps the biggest factor in reducing crop yield.  Soil 
moisture measurements can provide information on 
plant water availability, but these data are not regularly 
collected.  However, a growing number of inexpensive 
soil moisture and temperature sensors are available for 
use in farm fields to provide information on current 
conditions, and even to coordinate with irrigation 
scheduling systems (Oshaughnessy and Evett, 2008; 
www.agmoisture.com).

Measurement of local weather conditions, especially 
precipitation and air temperature, as well as wind speed, 
humidity, air pressure, and solar radiation, has been the 
responsibility of the National Weather Service through 

the Cooperative Observer Program (COOP), which 
was launched in 1890.  Participants in COOP collect 
daily precipitation and air temperature measurements, 
which are distributed through the National Climatic 
Data Center and many state climatologist offices (http://
dss.ucar.edu/datasets/ds510.0/).

Much of this information is now available to farmers 
in near-real time on the Internet, and many weather- 
related sites provide real-time storm tracking and fore-
casts ranging from hourly to 10-day blocks.  Many 
commercial organizations have also begun to market 
meteorological-observation systems, which can be pur-
chased by individuals and installed locally, with direct 
transmission of data into the corporate system.

These technologies not only provide farmers with 
site-specific meteorological information, they also 
contribute to new markets for companies that use 
these observations to create user-friendly agricultural 
decision-support products.  Examples of such services 
include forecasts of good weather windows for plant-
ing, spraying, or harvesting and site-specific climate 
information for evaluating crop rotation or pest man-
agement strategies.

Future Possibilities

Biosensor technology is still in its infancy, but first-
generation biosensors are now leaving the laboratory 
and being used in the real world.  One such technol-
ogy, the root oxygen bioavailability sensor (Liao et al., 
2004; Porterfield, 2002), mimics the consumption of 
oxygen by a root, and therefore the transport of water 
and nutrients into the plant.  Oxygen consumption is as 
important to crop yield as soil moisture because the rate 
of consumption is sensitive to both dry and overly wet 
(oxygen-limited) conditions (Drew and Stoltzy, 1996).

Biosensors have also been developed that are sen-
sitive to nutrients and contaminants of interest in  

First-generation biosensors, 
such as the root oxygen 

bioavailability sensor, are 
leaving the laboratory and 

being used in the real world.
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agriculture, including nitrate and phosphate (McLamore 
et al., 2009).  These sensors are currently limited in 
operational applicability by their short lifespan (days to 
months) and because they are designed for use in liquid 
media.  However, as scientists merge their knowledge 
of biosensors with modern manufacturing technologies, 
such sensors will surely make their way into agricultural 
applications, including monitoring the distribution of 
nitrogen and phosphorous across fields and informing 
next-generation farm equipment about where more fer-
tilizer should be applied to maximize production.

Measurement of carbon storage and fluxes will be 
important for agricultural systems to offset emissions 
in other parts of the economy.  Current fluxes of car-
bon from soils are poorly understood, primarily because 
making accurate measurements is difficult and costly; 
it requires proper installation of chambers at the soil 
surface to capture fluxes or micrometeorological sta-
tions taking rapid measurements to estimate fluxes just 
above the soil surface.  To be useful for climate-change 
adaptation and mitigation plans, however, newer, more 
cost-effective systems that require less operational over-
sight will be necessary for quantifying carbon fluxes and 
eventually for monitoring carbon sequestration.

Communications Technologies

Exploiting Multipurpose Communications Systems

The integration of new and existing sensor technolo-
gies with wireless communication systems has already 
begun, and many companies now offer wireless meteo-
rological and soil moisture sensor systems.  With these 
tools, farmers can check the status of their fields before 
leaving the house.

Connections to cellular phone networks, satellite 
uplinks, long-distance radio frequency communica-
tions, and direct Internet or WiFi connections have 
all become relatively common and are often options 

for commercially available sensor systems (e.g., http://
www.campbellsci.com/communications).  However, there 
are still significant difficulties in initial installation of 
many of these technologies.

Advancing the State of the Art for  
Production Agriculture

Self-organizing wireless hardware and software for 
sensor networks have recently become commercially 
available (Martinez et al., 2004), making the devel-
opment and deployment of sensor networks possible.  
Although these networks have great potential for agri-
cultural applications, integrating communications, data 
acquisition, and sensor technologies into operational 
nodes in a stable, functional sensor network requires 
significant effort and knowledge and will require over-
coming major challenges to their deployment.

Agricultural sensor networks must be robust enough 
to survive environmental extremes including rain, 
sun, and flooded fields.  They must also be minimally 
intrusive, so they do not hinder access to the field by 
heavy machinery, and they should be designed to sur-
vive inadvertent run-ins with such machinery.  In addi-
tion, sensor nodes must be designed for easy installation 
and removal, so nonfunctioning nodes can be easily 
replaced and all nodes can be removed prior to tillage.

Once these technological problems are resolved, 
probably in the coming decade, self-organizing networks 
could be integrated with inexpensive sensor technolo-
gies, making it possible for farmers to deploy networks 
rapidly across their fields and giving them immediate 
access to spatial and temporal information about field 
conditions.  In addition, it should be possible for sen-
sors to communicate directly with farm equipment and 
personal electronic devices, such as smart phones.

This would give farmers in the field access to both 
real-time and archival information about field con-
ditions as they survey or work in their fields.  Smart 
software or links to service providers could provide addi-
tional input about potential problem sites, potential 
ways to resolve those problems, and even suggestions 
for where to find materials or equipment or bids from 
other service providers.

Remote Sensing:  
Technologies for Scaling Information

Current Capabilities for Production Agriculture

“Remote sensing” refers to technologies that can 
make measurements without being in direct contact 

Fluxes of carbon from soils 
are poorly understood, 
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accurate measurements is 
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with the target of interest.  Often characterized not only 
by the acquisition of a measurement, but also by the spa-
tial and temporal resolution of data, information based 
on remote sensing provides capabilities for scaling in 
situ measurements and understanding physical and bio-
logical processes in systems that operate on watershed, 
regional, continental, and global scales.  These tech-
nologies extend spatial coverage, provide information 
about inaccessible areas, and acquire unique measure-
ments via a variety of sensing modalities.

Remote sensing technologies on tractors and com-
bines and on airborne and space-based platforms are now 
integral to modern agriculture, with applications ranging 
from subsistence farms to large-scale mechanized pro-
duction farms and high-value specialty crops.  Remotely 
sensed precipitation, temperature, and wind speed are 
incorporated into weather predictions; Global Position-
ing System (GPS) data are assimilated into guidance 
systems for field operations; and advanced sensors are 
incorporated into specialty equipment for use in preci-
sion agriculture.

Imaging technologies most commonly used in pro-
duction agricultural applications flown on satellites, 
airplanes, and unmanned vehicles record reflected 
light or energy from land/water surfaces.  Multispec-
tral sensors, such as the advanced very-high-resolution 
radiometer (AVHRR) sensors on NOAA satellites, 
have provided daily global coverage at kilometer scale 
for decades, resulting in widespread use of vegetation 
indices as indictors of crop vigor (Lillesand et al., 
2007).  In fact, these simple indices, which provide 
free data globally, are the most widely used inputs for 
models of agricultural yield and for empirical indica-
tors of crop health.

More advanced products derived from the next 
generation of these sensors, such as NASA MODIS 
(modis-land.gsfc.nasa.gov/), are slowly being incorpo-
rated into models used in agricultural research and 
applications.  Data products derived from the Landsat 
series of missions (landsat.usgs.gov) have also signifi-
cantly improved a wide range of agricultural applica-
tions, although the 16-day repeat cycle is a limiting 
factor, particularly in cloud-covered regions.  The 
availability of products based on multispectral data 
acquired by both space-based and airborne platforms 
has increased dramatically in the past decade, as satel-
lites launched by both governments and the private 
sector provide capability for timely products to support 
agricultural applications.

Future Contributions to Agriculture

Imaging technologies can now simultaneously acquire 
hundreds of measurements in narrow windows (bands) 
of the electromagnetic spectrum.  New active sensing 
technologies that emit energy in specific wavelengths 
and measure associated responses are also becoming 
commonplace.  Three technologies that are evolving to 
operational level on airborne and space-based platforms 
are particularly promising for advancing the science of 
agriculture:  (1) hyperspectral imaging; (2) active and 
passive microwave systems; and (3) laser-based systems.

Coupled with corresponding advances in agricultural 
modeling and data-delivery systems, these technologies 
can revolutionize the characterization and prediction of 
agricultural processes on multiple scales.  Like in situ 
sensors, these new remote sensing technologies provide 
opportunities for entrepreneurs to develop and deliver 
products to farmers.

Hyperspectral imaging sensors, which mimic labora-
tory spectrometers that provide chemistry-based infor-
mation related to reflectance and absorption, provide 
two-dimensional images in hundreds of narrow bands.  
These data can advance the science of agriculture in 
physically based and empirical models to estimate chlo-
rophyll content (Haboudane et al., 2008) and nitro-
gen content (Chen et al., 2010), monitor water stress, 
detect invasive species, evaluate water quality, and so 
on (Thenkabail et al., 2000).  Commercially flown air-
borne hyperspectral sensors monitor high-value agri-
cultural crops, and hyperspectral satellite missions are 
being developed by the international community for 
launch in the next decade.

Remote sensing-based soil moisture products are 
primarily based on measurements in the microwave 
region of the spectrum, where dielectric properties of 

Soil moisture, a critical factor 
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soils under different conditions can be related to soil 
moisture.  Although soil moisture cannot be measured 
directly and is difficult to derive from remote sensing 
data, it is one of the highest priority measurements 
for agricultural remote sensing.  In addition to being 
a critical factor in crop condition, soil moisture is an 
important parameter for characterizing atmospheric and 
land-surface interactions and plays a role in regional 
and global weather patterns.  Soil moisture is also of 
paramount importance in developing agricultural man-
agement strategies (e.g., irrigation) and predicting crop 
yield, as well as detecting and monitoring drought.

Current operational space-based soil-moisture prod-
ucts have low resolution (tens of km), which is useful 
for regional and global applications but of limited use 
for watershed-scale applications (Jackson et al., 2010).  
However, the upcoming launch of the NASA Soil 
Moisture Active/Passive (SMAP) mission (smap.jpl.
nasa.gov/Imperative) is widely anticipated by the agri-
cultural community because it is expected to provide 
advanced soil moisture products at resolutions that will 
be useful for watershed management.

Laser-based systems, such as LIDAR (light-detection 
and ranging) systems, emit laser pulses of given wave-
lengths and detect energy that is intercepted and scat-
tered back to the sensor.  GPS-derived trajectories and 
the platform motion are combined with the time to 
interception of the backscattered energy to derive high-
resolution three-dimensional presentations of the land-
scape (lidar.cr.usgs.gov/).

Airborne LIDAR products, which are widely used 
for floodplain, bathymetric, and urban mapping, are 
being investigated specifically for agricultural applica-
tions.  LIDAR provides the most accurate remote sens-
ing-based estimates of topography (and therefore slope 
and sun exposure), which are relevant to agricultural 
management decisions related to runoff (e.g., fertilizer 

application), crop production in high-relief areas, and 
soil mapping and management.  Information related to 
the vertical structure of vegetation (e.g., height, den-
sity) can also be derived from LIDAR, providing a non-
intrusive alternative to traditional destructive sampling 
(Dubayah et al., 2010; Selbeck et al., 2010).

These three advances in sensor technologies provide 
clear evidence of the potential of new data sources to 
support research and applications in agriculture in both 
the developed and developing worlds.  Coupled with 
decision-support models and rapidly evolving commu-
nication technologies, these new sources of data have 
much to contribute to next-generation agriculture.

Closing the Gaps with Models

Enabled by the widespread availability of computa-
tional resources, significant advances have been made 
in agricultural models that can link and integrate across 
scales and processes.  However, major challenges will 
have to be overcome before we can take advantage of 
the power of simulation modeling to evaluate agricul-
tural production, its impact on environment and eco-
system services, and the development of sustainable 
management strategies.  A few of these challenges are 
described briefly below.

Integration of Models at Different Spatial  
and Temporal Scales

In situ observations have long been used for the 
development, calibration, and evaluation of models—
from field-scale models such as DRAINMOD (Skaggs 
et al., 1995), which simulates water and nutrient move-
ment through subsurface drainage, to the WEPP model 
(Laflen et al., 1991), which simulates soil erosion from 
hillsides, to the soil and water assessment tool (SWAT) 
(Arnold et al., 1998), one of the most widely used 
catchment-scale models that can evaluate impacts of 
agricultural management decisions on crop production, 
hydrology, and water quality (swatmodel.tamu.edu).

Agricultural management decisions are made at field 
scales, but policy decisions apply on regional, national, 
or international scales.  Currently, simulation models for 
analyzing the impacts of agriculture on the field to river-
basin scale work in isolation from models that work on 
global scales.  To enable agricultural production evalu-
ations in a single modeling environment, these models 
will have to be integrated.

Remote sensing and sensor networks are two tech-
nologies that are helping to bridge the gap by providing 
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spatial observations that can be used to scale processes 
from the field and watershed to larger scales.  For exam-
ple, large-scale variability in soil moisture is controlled 
largely by general conditions (e.g., when it last rained 
and vegetation type), whereas small-scale variability 
depends much more on local conditions (e.g., Crow and 
Wood, 1999).

Process Representation to Evaluate Competing Demands

Evaluating competing demands for services from 
agricultural lands (e.g., biomass production for food 
and fuel, water-quality improvement, minimum-flow 
requirements to meet the needs of  ecosystems, etc.) will 
require an integrated modeling framework that includes 
ecosystem services, production of food and fuel, and the 
use of water to support agricultural production and eco-
system demands.  The development of such models and 
frameworks will be essential for sustainable agricultural 
production in the future.

Sensors and Networks for Monitoring Water Quality

Monitoring water quality is very expensive and time 
consuming.  This is the primary reason for the limited 
availability of global water-quality data products.  In 
addition, in situ and remote sensing technologies for 
monitoring water quality can only evaluate a limited 
number of indicators.  For the next generation of water-
quality models, we will need sensors that can easily and 
inexpensively monitor parameters such as nitrogen  
and phosphorus concentrations, pathogens, and sedi-
ment in real or near-real time.

New Applications for Modern Communication Devices

Applications to support daily decisions (e.g., the 
location of the nearest gas station) on mobile com-
munication devices have increased dramatically in the 
last few years, and the agricultural community also has 
access to some real-time data (e.g., crop yield).  How-
ever, we need applications that can be used to evaluate 
the impacts of agricultural production on hydrology, 
water quality, and ecosystem services.  The develop-
ment of such applications will facilitate education and 
decision making for sustainable agricultural production 
and environmental quality.

Looking to the Future

Although the hurdles described above will be difficult to 
surmount, attention is now focused on advanced sensing, 
data storage and retrieval, communication capabilities, 

modeling, and advanced applications in the agricultural 
community.  Coupled with the increasingly interdisci-
plinary nature of agricultural education, research, and 
commercial activities, the future looks promising for the 
development of new capabilities for meeting both grow-
ing demands for food, feed, and fiber, and for diverse eco-
system services in a rapidly evolving world.

References

Arnold, J.G., R. Srinivasan, R.S. Muttiah, and J.R. Williams.  
1998.  Large area hydrologic modeling and assessment–Part 
1: Model development.  Journal of the American Water 
Resources Association 34(1): 73–89.

Chen, P., D. Haboudae, N. Tremblay, J. Wang, P. Vigneault, 
and B. Li.  2010.  New spectral indicator assessing the 
efficiency of crop nitrogen treatment in corn and wheat.  
Remote Sensing of Environment 114: 1987–1997.

Crow, W.T., and E.F. Wood.  1999.  Multi-scale dynamics of 
soil moisture variability observed during SGP’97.  Geo-
physical Research Letters 26: 3485–3488.

Drew, M.C., and L.H. Stoltzy.  1996.  Growth under Oxy-
gen Stress.  Pp. 845–858 in Plant Roots: The Hidden Half, 
edited by Y. Waisel, A. Eshel, T. Beeckman, and U. Kafkafi.  
New York:  Marcel Decker.

Dubayah, R.O., S.L. Sheldon, D.B. Clark, M.A. Hofton, J.B. 
Blair, G.C. Hurtt, and R.L. Chazdon.  2010.  Estimation of 
tropical forest height and biomass dynamics using LiDAR 
remote sensing at La Selva, Costa Rica.  Journal of Geo-
physical Research 115(3): 1–17.

Haboudane, D., N. Tremblay, J.R. Miller, and P. Vin 
Vigneault.  2008.  Remote estimation of crop chlorophyll 
content using spectral indices derived from hyperspectral 
data.  IEEE Transactions on Geoscience and Remote Sens-
ing 46: 423–437.

Jackson, T.J., M.H. Cosh, R. Bindlish, P.J. Starks, D.D. Bosch, 
M. Seyfried, D.C. Goodrich, M.S. Moran, and J. Du.  2010.  
Validation of Advanced Microwave Scanning Radiometer 
soil moisture products.  IEEE Transactions on Geoscience 
and Remote Sensing 48: 4256–4272.

Joseph, A.T., R.van der Velde, P.E. O’Neill, R.H. Lang, 
and T. Gish.  2008.  Soil moisture retrieval during a 
corn growth cycle using L-Band (1.6 GHz) radar obser-
vations.  IEEE Transactions on Geoscience and Remote 
Sensing 46: 2365–2374.

Laflen, J.M., L.J. Lane, and G.R. Foster.  1991.  WEPP: A 
new generation of erosion prediction technology.  Journal 
of Soil and Water Conservation 46(1): 34–38.

Liao, J., G. Liu, O. Monje, G.W. Stutte, and D.M. Porterfield.  
2004.  Induction of hypoxic root metabolism results from 



The
BRIDGE46

physical limitations in O2 bioavailability in microgravity.  
Advances in Space Research 34(7): 1579–1584.

Lillesand, T.M., R.W. Kiefer, and J. Chipman.  2007.  Remote 
Sensing and Image Interpretation, 6th ed.  New York, N.Y.:  
John Wiley and Sons.

Lowenberg-DeBoer, J., and K. Erickson, eds.  2000.  Preci-
sion Farming Profitability.  West Lafayette, Ind.:  Purdue 
University Press.

Martinez, K., J.K. Hart, and R. Ong.  2004.  Environmental 
sensor networks.  IEEE Computer 37(8): 50–56.

McLamore, E.R., D.M. Porterfield, and M.K. Banks.  2009.  
Non-invasive self-referencing electrochemical sensors for 
quantifying real time biophysical flux in biofilms.  Biotech-
nology and Bioengineering 102: 791–799.

MEA (Millennium Environment Assessment).  2005.  Eco-
system and Human Well-Being: Synthesis.  Washington, 
D.C.:  Island Press.  Available online at http://www.millen-
niumassessment.org/en/Products.aspx?.

Oshaughnessy, S.A., and S.R. Evett.  2008.  Integration of 
wireless sensor networks into moving irrigation systems 

for automatic irrigation scheduling.  Paper No. 083452.  
Proceedings of the American Society of Agricultural and 
Biological Engineers International (ASABE), Providence, 
Rhode Island, June 29–July 2, 2008.

Porterfield, D.M.  2002.  Use of microsensors for studying the 
physiological activity of plant roots.  Pp. 503–527 in Plant 
Roots: The Hidden Half, edited by Y. Waisel, A. Eshel, T. 
Beeckman, and U. Kafkafi.  New York:  Marcel Decker.

Selbeck, J., V. Dworak, and D. Ehlert.  2010.  Testing a vehicle 
based scanning lidar sensor for crop detection.  Canadian 
Journal of Remote Sensing 36: 25–34.

Skaggs, R.W., M.A. Breve, A.T. Mohammad, J.E. Parsons, and 
J.W. Gillliam.  1995.  Simulation of drainage water quality 
with DRAINMOD.  Irrigation and Drainage Systems 9(3): 
257–277.  doi:10.1007/BF00880867.

Thenkabail, P.S., R.B. Smith, and E. DePauw.  2000.  
Hyperspectral vegetation indices and their relation-
ships with agricultural characteristics.  Remote Sens-
ing of Environment 71: 158–182.

http://www.millenniumassessment.org/en/Products.aspx?
http://www.millenniumassessment.org/en/Products.aspx?

